Non-unique factorization of polynomials over residue class rings of the integers

نویسندگان

  • Christopher Frei
  • Sophie Frisch
چکیده

We investigate non-unique factorization of polynomials in Zpn [x] into irreducibles. As a Noetherian ring whose zero-divisors are contained in the Jacobson radical, Zpn [x] is atomic. We reduce the question of factoring arbitrary non-zero polynomials into irreducibles to the problem of factoring monic polynomials into monic irreducibles. The multiplicative monoid of monic polynomials of Zpn [x] is a direct sum of monoids corresponding to irreducible polynomials in Zp[x], and we show that each of these monoids has infinite elasticity. Moreover, for every m ∈ N, there exists in each of these monoids a product of 2 irreducibles that can also be represented as a product of m irreducibles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Module MA3412: Integral Domains, Modules and Algebraic Integers

2 Integral Domains 12 2.1 Factorization in Integral Domains . . . . . . . . . . . . . . . . 12 2.2 Euclidean Domains . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Principal Ideal Domains . . . . . . . . . . . . . . . . . . . . . 16 2.4 Fermat’s Two Squares Theorem . . . . . . . . . . . . . . . . . 17 2.5 Maximal Ideals and Prime Ideals . . . . . . . . . . . . . . . . 20 2.6 Unique Fact...

متن کامل

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

On zero divisor graph of unique product monoid rings over Noetherian reversible ring

 Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors.  The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero  zero-divisors of  $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$.  In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...

متن کامل

Signature-based Criteria for Möller's Algorithm for Computing Gröbner Bases over Principal Ideal Domains

Signature-based algorithms have become a standard approach for Gröbner basis computations for polynomial systems over fields, but how to extend these techniques to coefficients in general rings is not yet as well understood. In this paper, we present a signature-based algorithm for computing Gröbner bases over principal ideal domains (e.g. the ring of integers or the ring of univariate polynomi...

متن کامل

Notes on Algebraic Number Theory

1 Number Fields 2 1.1 Norm, Trace, and Discriminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Algebraic Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Dedekind Rings 7 2.1 Fractional Ideals and Unique Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 The Ideal Class Group ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009